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ROBERT KRAUTHGAMER AND TIM ROUGHGARDEN

1 Introduction

Metric spaces1 arise naturally in a variety of computational settings, and are commonly used to model
diverse data sets such as latencies between nodes in the Internet, dissimilarity between objects such as
documents and images, and the cost of traveling between physical locations. Additionally, metric spaces
are a useful technical tool, for example when analyzing algorithms based on a linear or semidefinite
programming relaxation of Sparsest Cut and other NP-hard problems.

Many useful computational tasks in metric spaces revolve around different types of clustering prob-
lems. In these problems, the goal is to produce, for a given metric space (X ,d), a collection S of subsets
of X such that, vaguely speaking, nearby points in X tend to appear in the same subset.

This paper makes two broad contributions to the study of algorithms for metric clustering problems.
First, we study a number of basic metric clustering problems from an optimization perspective, and de-
sign polynomial-time algorithms that provably achieve a near-optimal clustering for every metric space.
The large literature on these metric clustering problems has focused exclusively on absolute (worst-case)
bounds, seeking guarantees that hold for every possible metric space (or for every metric in a certain
family). By contrast, we emphasize relative guarantees, where the objective is to compute a cluster-
ing that is close to optimal for the given input. Most absolute bounds translate easily to relative ones
(in particular, they are efficiently computable), but our algorithms provide significantly better relative
guarantees than those implied by the known absolute results. At a high level, our work can be viewed
as a parallel to computing an optimal embedding of an input metric space into Euclidean space using
semidefinite programming [30], or the recent line of research on computing embeddings with (approx-
imately) minimum distortion, initiated by Kenyon, Rabani, and Sinclair [17]; for a recent account, see
also [4, 33].

Why study relative guarantees? The quest for absolute bounds has obviously been very fruitful, but
these bounds may not be very strong for a particular instance at hand, which may admit a much better
solution than the worst-possible metric. A popular approach for eluding worst-case absolute bounds is
to impose additional structure on the input metric, such as planarity or low-dimensionality, and then
prove improved absolute bounds for that restricted class of metrics. But given an arbitrary distance
matrix representing, say, latencies in the Internet, it may be highly non-trivial to ascertain whether
the corresponding metric is close to one of these families. In contrast, an approximation algorithm
guarantees a good solution provided only that one exists. Technically, this requires one to design a
“unified” algorithm that works regardless of the precise reason the input admits an improved bound.

An approximation algorithm is also useful for inputs where the known absolute bounds are non-
constructive. In this case, the approximation algorithm recovers, from the existential proof, an efficient
algorithm that achieves nearly the same absolute guarantees. In a sense, this is true for planar metrics,2

where, to date, no algorithm is known to efficiently determine whether an input metric is planar (or close
to being planar). Consequently, the decomposition algorithm for planar metrics by Klein, Plotkin, and
Rao [18] (see also [35, 11]) can only be applied if the planar metric is accompanied by a planar graph
that realizes the metric. One immediate outcome of our approximation algorithms is that several results

1A metric space (X ,d) comprises a set X of points and a distance function d : X×X 7→ R that is nonnegative and symmetric,
and that satisfies the triangle inequality and the property that d(x,y) = 0 if and only if x = y.

2We call a metric planar if it can be derived from the shortest-path distances in a planar graph with nonnegative edge
weights.
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METRIC CLUSTERING VIA CONSISTENT LABELING

Problem Approximation factor Absolute guarantee
Separating Decomposition 2 [Theorem 3.4] O(logn) [5]
Padded Decomposition O(1) bicriteria [Theorem 3.9] O(logn) [5]
Sparse Cover (stretch k) O(logn) [Corollary 4.2] 2kn1/k [3]
(ε,ρ)-Triangulation O(ln 1

ε
) bicriteria [Corollary 4.5] n (trivial)

Table 1: Our approximation factors and those implied by previous work on absolute bounds.

that rely on this decomposition, such as the low-distortion embedding into normed spaces of [35, 23], do
not require a planar realization of the input metric and hold under the weaker assumption that a planar
realization exists (or even that the input metric is close, by means of distortion, to a planar metric).3

Moreover, our algorithms are based on linear programming (LP) relaxations, and thus automati-
cally generate a “certificate” of near-optimality (namely, the optimal fractional solution). These simple
certificates could possibly be used to prove that a good solution does not exist (e.g., by bounding the
optimal fractional solution using duality). Our relative guarantees prove that this lower bound approach
is universal, in the sense that a near-optimal certificate always exists.

The second contribution of the paper is to cast a number of metric clustering problems that have
been well studied—but almost always as disparate problems—into a common modeling and algorithmic
framework, which we call the Consistent Labeling problem. At a high level, an instance of Consistent
Labeling is described by a set A of objects, a list La of allowable labels for each object a ∈ A, and a
collection C of subsets of A. The goal is to assign each object few labels so that subsets are consistent,
in the sense that the objects of a subset are all assigned a common label. The objects possessing a given
label can be viewed as a “cluster” of objects (where clusters can overlap when we allow multiple labels
per object), and the consistency constraint for a set S ∈C requires that at least one cluster contains all of
the objects of S (i.e., there is at least one label common to all objects in S). In this paper, we show that
many metric clustering problems are special cases of different variants of Consistent Labeling. We then
provide a family of LP relaxations for all of these problems, and design simple randomized rounding
procedures that achieve provably good (relative) approximation guarantees.

We now detail the optimization problems for which we design approximation algorithms: these are
two decomposition problems and two covering problems, as described in the sequel. Table 1 displays
highlights of our results.

1.1 Metric Decompositions

Let (X ,d) be a finite metric space on n = |X | points. A cluster is a subset of the points S ⊆ X . The ball
(in X) of radius r ≥ 0 centered at x ∈ X is B(x,r) = {y ∈ X : d(x,y)≤ r}. The diameter of a cluster C is
diam(C) = maxx,y∈C d(x,y), and its radius is rad(C) = minx0∈X maxz∈C d(x0,z); a point x0 attaining the
radius is called a center of C.

3This argument applies more generally to excluded-minor graphs. The situation is similar also regarding the absolute guar-
antees of [28] for low-genus graphs and those of [8] for metrics that admit a low-distortion embedding into a low-dimensional
Euclidean space.
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ROBERT KRAUTHGAMER AND TIM ROUGHGARDEN

Perhaps the simplest genre of metric clustering problems asks for a partition of X into clusters of
bounded radius while separating “few” points. We address the two fundamental variants of this notion:
computing separating decompositions and padded decompositions. Both of these are central tools in
metric embeddings (e.g., for designing probabilistic embeddings into trees [5, 10] and embeddings into
`2 [35, 23], respectively) and useful in algorithmic applications. Earlier incarnations of these concepts
appeared e.g. in [3, 29, 31, 13].

Separating Decomposition. Formally, a decomposition of X is a probability distribution µ over parti-
tions of X . Let P be a partition of X ; as mentioned above, we shall refer to the elements of P as clusters.
For x∈ X , let P(x) denote the cluster S∈ P that contains x, so x∈ S∈ P. We say that a partition separates
two points x,y ∈ X if it assigns them to distinct clusters. A partition is ∆-bounded if each of its clusters
has radius at most ∆, and a decomposition is ∆-bounded if every partition in its support is ∆-bounded.4

A ∆-bounded decomposition µ is called α-separating for α ≥ 0 if for all x,y ∈ X ,

Pr
P∈µ

[P(x) 6= P(y)]≤ α·d(x,y)
∆

(1.1)

or, equivalently,

Pr
P∈µ

[P(x) = P(y)]≥ 1− α·d(x,y)
∆

. (1.2)

We denote the minimum value α ≥ 0 satisfying (1.1) by α∗(X ,∆). Bartal [5] designed an algorithm
that achieves α = O(logn) for every n-point input metric X , and showed that this bound is tight (i.e., the
best possible in the worst case). Constant absolute bounds are known for planar metrics [18, 35, 11] and
other restricted classes of metrics [8, 14, 22, 28].

Our first result is a 2-approximation algorithm for the problem of computing α∗(X ,∆) (and con-
structing a corresponding decomposition). To see how this problem relates to the Consistent Labeling
problem, take both the object set and the label set to be the points X . The label set Lx for a point x ∈ X is
defined to be the points in the ball B(x,∆). We also impose the restriction that each point receives only
one label. We can then interpret the set of vertices with a given label z ∈ X as a cluster of radius at most
∆ (centered at z), and these clusters form a partition of X . There is one consistency constraint for each
pair of points; the constraint is satisfied if and only if the points are given the same label (i.e., assigned
to the same cluster). The goal is to produce a distribution over feasible labelings such that the maximum
probability of a set being labeled inconsistently (i.e., a pair x,y ∈ X being separated by the partition),
with suitable weighting by 1/d(x,y), is minimized.

Remark 1.1. Another application of the above approximation algorithm for computing separating de-
compositions was found by [6]: a constant-factor approximation algorithm for the problem of com-
puting the least distortion embedding of an input metric into a distribution of dominating ultrametrics.
This problem falls into the aforementioned category of computing an embedding with approximately
minimum distortion [17, 4].

4Previous literature sometimes uses diameter instead of radius. Obviously the two quantities are within a factor of 2 of each
other, and for us the radius is more convenient.
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METRIC CLUSTERING VIA CONSISTENT LABELING

Padded Decomposition. Using the definitions above, a ∆-bounded decomposition µ is (β ,q)-padded
for β ,q > 0 if for all x ∈ X ,

Pr
P∈µ

[B(x,∆/β )⊆ P(x)]≥ q. (1.3)

For a given q, we denote the smallest β > 0 satisfying (1.3) by β ∗(X ,∆,q). We can model computing a
padded decomposition as a Consistent Labeling problem in the same way as for a separating decompo-
sition, except that now the collection C of consistency sets is not all pairs of points, but rather all balls
of radius ∆/β .

Computing near-optimal padded decompositions appears to be technically harder than separating
decompositions, but using a more sophisticated rounding algorithm we can compute a ∆-bounded de-
composition that is (2β ∗,q/12)-padded, where β ∗ = β ∗(X ,∆,q). This bicriteria guarantee is often as
useful for applications as a true approximation; in fact, in the aforementioned applications of padded
decompositions, the parameter q is fixed to an arbitrary constant such as 1/2, and relaxing it to q/12 is
as good as any other positive constant.

The problem of computing a near-optimal padded decomposition has not been studied previously,
and the absolute guarantees yield, at best, an O(logn)-approximation (recall n = |X |). Also, while there
is a relationship between padded and separating decompositions of the form α∗(X ,∆)≤ 4β ∗(X ,∆/2,1/2)
[27], in general the two quantities can be very different; e.g., in m-dimensional Euclidean space, α∗ =
Θ(
√

m) [8] and β ∗ = Θ(m) [27, Section 2.1].

1.2 Covering Problems

Covering problems form a second genre of metric clustering problems, where the goal is to minimize
the overlap between clusters subject to some type of covering constraint. We focus on the following two
such problems.

Sparse Cover. Consider an undirected graph G = (V,E) with positive edge lengths and a list C1, . . . ,Cp

of subsets of nodes. The graph vertices naturally represent points in a metric space — n = |V | points
with distances corresponding to shortest-path lengths in G — and thus the terminology from Section 1.1
extends to the current scenario (e.g., a cluster is a subset of V ). We restrict our discussion to the case
p = n, which includes the typical case where the subsets Ci correspond to balls around the vertices. A
sparse cover [3] is a ∆-bounded collection S of clusters, such that every subset Ci is contained in some
cluster of S. The degree of a vertex v in S is the number of clusters of S that contain v. Awerbuch and
Peleg [3] use sparse covers as a building block for a number of distributed network algorithms, including
a routing scheme with low stretch5 and small storage at every node. Specifically, the stretch of the routing
scheme in [3] is proportional to ∆/maxi rad(Ci), and the maximum degree in the sparse cover determines
the nodes’ storage requirements. Awerbuch and Peleg [3] give absolute bounds for computing a sparse
cover: for each integer k ≥ 1, they show how to construct a sparse cover with ∆/maxi rad(Ci) ≤ k and
maximum degree at most 2kn1/k. This immediately implies a similar relative guarantee of 2kn1/k on the
maximum degree.

5The stretch of a routing scheme is the largest factor by which the length of an employed routing path exceeds that of a
shortest path between the same source and destination.
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We study the metric variant of sparse covers, when G is a complete graph representing a metric
space. This variant is essentially the same as the Nagata dimension of a metric space (see [2, 25]).6

We model the problem of computing a sparse cover with minimum maximum degree (where ∆ > 0
and the subsets Ci are given as part of the input) as a Consistent Labeling problem and give an O(logn)-
approximation algorithm. In the Consistent Labeling formulation, both objects and labels correspond to
the vertices V , and a label can only be assigned to an object if they correspond to two vertices at distance
at most ∆ in G. A ∆-bounded collection of clusters induces a feasible labeling, and the degree of a
vertex in the clustering is precisely the number of labels the vertex is assigned. Finally, the constraint
of containing a set Ci in at least one cluster naturally translates to a consistency constraint for the subset
Ci, and conversely a feasible labeling induces a sparse cover. Computing a sparse cover with minimum
maximum degree thus translates to computing a feasible labeling that labels all the sets consistently
while minimizing the maximum number of labels allowed at an object.

Metric Triangulation. Finally, we consider computing metric triangulations of small order [15, 19].
Network triangulation is a heuristic for estimating distances in a network, initially suggested by Guyton
and Schwartz [15]. Motivated by the practical success of this heuristic, Kleinberg, Slivkins, and Wexler
[19] initiated a theoretical study of triangulation in metric spaces, formally defined as follows. A trian-
gulation of a metric (X ,d) assigns to every x ∈ X a collection of beacons Sx ⊆ X . The triangulation has
order k if max{|Sx| : x ∈ X} ≤ k. We are interested in low-order triangulations in which the distance
between every x,y ∈ X can be estimated from their distances to Sx ∩ Sy using the triangle inequality.
Formally, define

D+(x,y) = min
b∈Sx∩Sy

[d(x,b)+d(b,y)]

D−(x,y) = max
b∈Sx∩Sy

|d(x,b)−d(b,y)|.

The triangulation is called an (ε,ρ)-triangulation (for 0 ≤ ε ≤ 1 and ρ ≥ 1) if for all but an ε-fraction
of the pairs x,y ∈ X we have D+(x,y)≤ ρ ·d(x,y) and D−(x,y)≥ d(x,y)/ρ . Let kopt(X ,ε,ρ) denote the
smallest k > 0 such that (X ,d) admits an (ε,ρ)-triangulation of order k.

The problem of computing a near-optimal metric triangulation — that is, computing kopt(X ,ε,ρ)
— has not been studied before, although several absolute guarantees are known. In [19], it is shown
that doubling metrics admit an (ε,ρ)-triangulation of constant order (the upper bound depends only
on ε,ρ and the doubling constant), and additional bounds are proved in [37, 38]. However, in some
metrics triangulation requires a very high order (e.g., Ω(n) in uniform metrics and nΩ(1) in tree metrics
[21], for fixed ε,ρ), and thus absolute bounds cannot yield any nontrivial approximation ratio. While
this problem is quite different from the Sparse Cover application discussed above, we formulate and
approximate both in a common way. In particular, our techniques immediately yield good bicriteria
approximation algorithms for minimizing the order of a triangulation subject to being able to estimate
almost all pairwise distances.

6Our variant measures all distances in the metric space and corresponds to the so-called weak diameter bound. In the
context of a graph with shortest-path distances, the construction of [3] satisfies the more stringent strong diameter bound,
where distances inside a cluster are determined by shortest paths in the induced subgraph.
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METRIC CLUSTERING VIA CONSISTENT LABELING

1.3 Overview and Techniques

At a high level, our algorithms follow the well-known paradigm of solving a linear programming relax-
ation of the problem and applying randomized rounding. We thus start, in Section 2, by formulating LP
relaxations for several variants of the Consistent Labeling problem.

Section 3 gives approximation algorithms for the problems of computing separating and padded de-
compositions. We model them as special cases of a maximization version of the Consistent Labeling
problem, where the goal is to maximize the fraction of consistent sets while obeying an upper bound
on the number of labels assigned to every object. To round our linear programming relaxations (given
in Section 2) in a “coordinated” way that encourages consistently labeled sets, we build on a rounding
procedure of Kleinberg and Tardos [20]. This procedure was designed for the metric labeling problem
with the uniform label-metric (which, in turn, is a modification of the multiway cut algorithm of Ca-
linescu, Karloff, and Rabani [7]). The differences between our intended applications and the metric
labeling problem necessitate extensions to their analysis; for example, we require guarantees for maxi-
mization rather than minimization problems, and for general set systems rather than for pairs of points
(i.e., hypergraphs instead of graphs). Our extensions to the Kleinberg-Tardos rounding algorithm and
analysis lead, for example, to a 2-approximation algorithm for the separating decomposition problem.
The padded decomposition problem is significantly more challenging, and requires us to enhance this
basic rounding algorithm in two ways: first, we limit the number of rounding phases to control the prolif-
eration of different labels; second, we add two postprocessing steps that first weed out some problematic
labels and then expand the residual clusters to ensure the padding properties.

Section 4 gives a family of approximation algorithms that approximate, in particular, the sparse cover
and metric triangulation problems. Our algorithm and analysis techniques are essentially “dualized”
versions of those used earlier for the maximization versions of Consistent Labeling.

Remark 1.2. In some of the problems we study, the goal is to produce a probability distribution over
labelings (or partitions). We permit a solution in the form of an algorithm that is randomized and reports
one (random) labeling; the distribution over labelings is the algorithm’s output. If an explicit probability
distribution is desired, it can be obtained (with a minor loss) by sampling the randomized algorithm
sufficiently many times and applying standard concentration arguments.

2 Linear Programming Relaxations for Consistent Labeling

Motivated by the breadth of applications in the Introduction, we examine several variants of the Consis-
tent Labeling problem. This section formally defines these variants and gives a family of linear program-
ming relaxations for them. We often omit the straightforward proofs that they are in fact relaxations.

2.1 Common Ingredients

In all cases, the input includes a set A of objects, a set La of allowable labels for each object a (drawn
from a ground set L), and a collection C of subsets of A. In some applications, we also allow each
set S ∈ C to have a nonnegative weight wS. A feasible labeling assigns to every object a some subset
of La. Our two main objectives are to minimize the number of labels assigned to each object, and to

THEORY OF COMPUTING 7



ROBERT KRAUTHGAMER AND TIM ROUGHGARDEN

maximize the number (or total weight) of sets that are consistently labeled, meaning that a common
label is assigned to all of the objects in the set.

The following variables and constraints are common to all our relaxations. The variable xai repre-
sents the assignment of label i ∈ L to object a ∈ A; intuitively, it is an indicator (taking values in {0,1}),
but in some of our problems a fractional value is also admissible. Constraint (2.1) below then controls
the number of (fractional) labels assigned to each object. In some applications, k will be a decision
variable; in others, it will be part of the problem input. The variable yiS encodes the extent to which set S
is consistently labeled with the label i, giving rise to the constraint (2.2) below. The variable zS encodes
the extent to which set S is (fractionally) consistently labeled, giving rise to constraints (2.3) and (2.4)
below. The fifth constraint below enforces the restriction that objects are assigned only to allowed labels.

1 ≤ ∑
i∈L

xai ≤ k for every object a ∈ A (2.1)

yiS ≤ xai for every set S ∈ C, label i ∈ L, and object a ∈ S (2.2)

zS ≤ ∑
i∈L

yiS for every set S ∈ C (2.3)

zS ≤ 1 for every set S ∈ C (2.4)

xai = 0 for every object a ∈ A and label i /∈ La. (2.5)

We always assume that all LP variables are nonnegative; this applies in particular to each variable of the
form xai, yiS, and zS.

2.2 Maximization Version

In the MAXIMUM CONSISTENT LABELING (MAX CL) problem, the objective is to compute a feasible
labeling that assigns at most k labels to every object (k is part of the input) and maximizes the total
weight of the consistently labeled sets. Our LP relaxation for MAX CL is to optimize

max ∑
S∈C

wSzS (2.6)

subject to (2.1)–(2.5).
Padded and separating decompositions motivate the MAXIMUM FAIR CONSISTENT LABELING

(MAX FAIR CL) problem, where given an input as in MAX CL, the goal is to compute a distribution
over feasible labelings that assign at most k labels to every object (with probability 1) and maximizes
the minimum weighted probability (over S ∈ C) that a set S is labeled consistently. Computing both
separating and padded decompositions are special cases of MAX FAIR CL with k = 1, where the sets
correspond to pairs of points, and to balls of radius ∆/β around each point in the given metric space,
respectively. Our LP relaxation for this problem maximizes a decision variable α subject to (2.1)–(2.5)
and

wSzS ≥ α for every set S ∈ C. (2.7)

THEORY OF COMPUTING 8
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2.3 Minimization Version

In the minimization version of consistent labeling, we constrain (from below) the fraction of consistently
labeled sets and seek a labeling that uses as few labels per object as possible. (We could also include set
weights, but our applications do not require them.) We call this problem the MINIMUM CONSISTENT
LABELING (MIN CL) problem.

In the complete special case, we demand that all sets are consistently labeled. Formally, the MINI-
MUM COMPLETE CONSISTENT LABELING (MIN CCL) problem is, given the usual data, to compute
a feasible labeling that consistently labels all sets and minimizes the maximum number of labels as-
signed to an object. In our LP relaxation for MIN CCL, we minimize the decision variable k subject
to (2.1)–(2.5) and the additional constraint that (2.4) holds with equality for every set S ∈ C.

As noted in the Introduction, computing a sparse cover of a network is a special case of MIN CCL.
Several extensions to the MIN CCL problem are easily accommodated; we use Network Triangulation
as a case study in Section 4.

Before proceeding to our approximation algorithms, we note that the MAX CL, MAX FAIR CL,
and MIN CCL problems are all APX-hard (see Section 5 for details).

3 Maximum Consistent Labeling

This section gives a generic approximation algorithm for the MAX CL and MAX FAIR CL problems.
We then refine the algorithm and its analysis to give an approximation algorithm for computing a separat-
ing decomposition (Theorem 3.4). Subsequently, we enhance the algorithm to handle the more difficult
task of approximating an optimal padded decomposition (Theorem 3.9). We remark that [26] study ap-
proximation algorithms for a different problem of maximizing consistencies, which is closer in spirit to
MAX k-CUT.

3.1 Approximation Algorithm for MAX CL and MAX FAIR CL

We first give a Θ(1/ fmax)-approximation algorithm for weighted MAX CL and MAX FAIR CL, where
fmax = maxS∈C |S| denotes the largest cardinality of a set of C. We build on a rounding procedure that
was designed by Kleinberg and Tardos [20] for the metric labeling problem with the uniform metric,
even though our context is quite different. First, we wish to maximize the probability of consistency, as
in (1.2), rather than minimize the probability of inconsistency, as in (1.1). Second, an object may get
multiple labels (k) rather than one label (k = 1). Third, the notion of consistency is not as simple, as it
involves a subset S (whose size may be bigger than 2) and each object in S has k labels (where k may be
bigger than 1). Fourth, we may want to produce a distribution (in MAX FAIR CL) rather than only one
solution. It is thus a pleasant surprise that the algorithm in [20] lends itself to our setting; in fact, our
algorithm can be easily seen to generalize theirs from k = 1 labels to general k.

Our randomized approximation algorithm is shown in Figure 1. After solving the appropriate LP
relaxation, the rounding algorithm is the same for both MAX CL and MAX FAIR CL: we repeatedly
choose a label i ∈ L and a threshold t ∈ [0,1] independently and uniformly at random, and for all objects
a with x∗ai larger than the threshold t, we add i to the set of labels assigned to a. (If i is already assigned
to a, then this assignment is redundant.) The algorithm terminates when every object has been assigned
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ROBERT KRAUTHGAMER AND TIM ROUGHGARDEN

Input: an instance of MAX CL or MAX FAIR CL.
1. Solve the appropriate LP relaxation: for MAX CL, maximize (2.6) subject to (2.1)–(2.5); for MAX FAIR CL,
maximize α subject to (2.1)–(2.5) and (2.7). Let (x∗,y∗,z∗) denote the optimal LP solution.
2. Repeat until every object has been assigned at least k labels (counting multiplicities):
3. Choose a label i ∈ L and a threshold t ∈ [0,1] uniformly at random.
4. For each object a ∈ A, if x∗ai > t, then add i to the set of labels assigned to a.
5. Output for each object the first k labels it received.

Figure 1: The MAX CL and MAX FAIR CL algorithms.

a label in at least k iterations (not necessarily distinct labels). To respect the constraint on the number of
labels, each object retains only the first k labels that it was assigned. This final step, together with the
LP constraint (2.5), ensures that the output of the algorithm is a feasible labeling.

Our analysis hinges on the following lemma, which lower bounds the probability that a set is consis-
tently labeled by our rounding algorithm. We also use the lemma in Section 4 for minimization versions
of Consistent Labeling.

Lemma 3.1. Consider an execution of the algorithm of Figure 1. For every set S ∈ C,

Pr[S consistently labeled]≥ 1−
(

1−
z∗S

k|S|

)k

≥
z∗S

2|S|
.

Proof. Fix a set S ∈ C. For each label i ∈ L, let xmax
i and xmin

i denote maxa∈S x∗ai and mina∈S x∗ai, respec-
tively. Let F ⊆ L denote the set of labels i for which xmax

i > 0.
Now fix an iteration. Call the iteration active if at least one object of S receives a (possibly redundant)

label. In an active iteration, the conditional probability that the label i was chosen is xmax
i /∑ j∈L xmax

j .
Let ES denote the event that S is consistently labeled (not necessarily for the first time) in this iteration.
Thus,

Pr[ES |active] = ∑
i∈F

Pr[ES |active, label=i] ·Pr[label=i | active]

= ∑
i∈F

(
xmin

i

xmax
i

)
·

(
xmax

i

∑ j∈F xmax
j

)

=
1

∑ j∈F xmax
j

∑
i∈F

xmin
i

≥ 1
k|S| ∑i∈L

y∗iS (3.1)

≥
z∗S

k|S|
, (3.2)

where inequality (3.1) follows from the LP constraints (2.1) and (2.2), and inequality (3.2) follows from
the LP constraint (2.3).
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Since the iterations are independent, the first inequality in the lemma follows by considering the first
k iterations that are active (note there are indeed at least k). The second inequality is derived by applying
the (crude) inequality (1− z

k )
k ≤ e−z ≤ 1− z+ z2

2 ≤ 1− z
2 for z ∈ (0,1).

Using this lemma and linearity of expectation, we immediately obtain the approximation bounds for
the MAX CL and MAX FAIR CL problems.

Theorem 3.2. There are randomized polynomial-time (1/2 fmax)-approximation algorithms for weighted
MAX CL and MAX FAIR CL.

The bound 1/2 fmax in Theorem 3.2 can be sharpened; for example, it is 1/ fmax when k = 1.
Theorem 3.2 does not immediately give a useful approximation algorithm for computing separating

or padded decompositions; we next give the necessary refinements.

3.2 Separating Decomposition

Theorem 3.2 gives an approximation guarantee for the maximum consistency probability (as in (1.2)),
rather than for the minimum inconsistency probability (as in (1.1)). These two objectives are equivalent
for exact optimization, but not for approximation. We now show how to modify our LP relaxation and
analysis for MAX FAIR CL (but using the same rounding algorithm), to obtain an fmax-approximation
for the objective (1.1). Choosing the weight wS of a set S = {x,y} to be ∆/d(x,y), we immediately get
a 2-approximation algorithm for computing an optimal separating decomposition, which matches the
integrality gap for our LP relaxation. The precise statements appear in Theorems 3.4 and 3.5.

We address the problem of minimizing the inconsistency probability using the LP (3.3) below. This
LP differs from the one used for MAX FAIR CL in that we fix k = 1; that yiS represents the probability
of an inconsistency involving label i; zS represents the probability that S is inconsistently labeled; and
we bound the zS’s from above (rather than from below) using α .

Min α

s.t. ∑i∈L xai = 1 ∀a ∈ A
yiS ≥ xai− xa′i ∀S ∈ C; a,a′ ∈ S
zS ≥ 1

|S| ∑i∈L yiS ∀S ∈ C
xai = 0 ∀a ∈ A; i /∈ La

α ≥ wSzS ∀S ∈ C.

(3.3)

It is straightforward to verify that this LP is indeed a relaxation for the problem of minimizing
inconsistencies. Given a distribution over partitions, one defines xai as the probability that a receives
label i; yiS as the probability that a set S has at least one but not all elements labeled i (which is at least
maxa xai−mina xai); and zS as the probability that S is inconsistently labeled. When S is inconsistently
labeled it involves at most |S| distinct labels, which justifies the inequality |S|zS ≥ ∑i∈L yiS. This LP can
be viewed as a generalization of the Kleinberg-Tardos relaxation from the case |S|= 2 to general sets S.

Let (x∗,y∗,z∗,α∗) be the optimal fractional solution to LP (3.3); then α∗ is a lower bound on the
value of an optimal solution. We now apply to this LP solution the rounding algorithm of Figure 1.
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Lemma 3.3. When executing the algorithm of Figure 1 on the solution of LP (3.3), for every set S ∈ C,

Pr[S is not consistently labeled]≤ |S|z∗S.

Proof. Fix a set S ∈ C. For each label i ∈ L, let xmax
i and xmin

i denote maxa∈S x∗ai and mina∈S x∗ai, respec-
tively. Let F ⊆ L denote the set of labels for which xmax

i > 0. For a given iteration, denote by ES the
event that S is not consistently labeled. Consider henceforth the first iteration in which some object of S
receives a label. We then have (conditioned on this event):

Pr[ES] = ∑
i∈F

Pr[ES | label=i] ·Pr[label=i]

= ∑
i∈F

(
xmax

i −xmin
i

xmax
i

)
·
(

xmax
i

∑ j∈F xmax
j

)
= 1

∑ j∈F xmax
j

∑
i∈F

(xmax
i − xmin

i ).

By the first LP constraint, the denominator must be at least 1, and by the second LP constraint, each
summand is xmax

i − xmin
i ≤ y∗iS. ¿From these, together with the third LP constraint, we conclude that

Pr[ES]≤ ∑i∈L y∗iS ≤ |S|z∗S.

This inequality immediately implies an fmax-approximation for minimizing the (weighted) inconsis-
tency probability of all sets. In particular, we obtain the following theorem.

Theorem 3.4. There is a randomized polynomial-time 2-approximation algorithm for computing a sep-
arating decomposition.

Our next result shows that no better approximation ratio is possible using our linear programming
relaxation as a lower bound.

Theorem 3.5. The LP relaxation (3.3) has integrality gap arbitrarily close to 2, even in the special case
of computing a separating decomposition.

Proof. Let the radius bound be ∆ = 1, and let (X ,d) be an n-point metric where the pairwise distances
equal 2 along one specific perfect matching between the points, and equal 1 otherwise. Formally, let
X = {1,2, . . . ,n}, where n > 2 is even, and for each j 6= j′ let d( j, j′) = 2 if | j− j′|= n/2 and d( j, j′) = 1
otherwise.

We claim that the optimal value of the LP is α ≤ 1/(n− 1). Indeed, assign each object (point) j
equally in a fractional sense to all n− 1 labels (points) j′ with d( j, j′) ≤ 1, i.e. x j j′ = 1/(n− 1). For
each i and S set accordingly yiS = maxa∈S xai−mina∈S xai, and for each S set zS = (∑i∈L yiS)/2. It is easy
to verify that for every S = { j, j′} ∈ C we have zS = 1

n−1 , and recall wS = 1/d( j, j′)≤ 1.
Consider now a ∆-bounded α∗-separating decomposition, and let us give a lower bound on α∗. Let

P be a random partition drawn from this decomposition, and define the following random variable:

Z =
n

∑
j=1

1{P( j)6=P( j+1)},
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where point n + 1 is understood to be point 1. On the one hand, linearity of expectation implies that
E[Z] ≤ nα∗. On the other hand, with probability 1 we have Z ≥ 2, since a ∆-bounded partition P must
contain at least two clusters. Thus α∗ ≥ E[Z]/n ≥ 2/n, proving that the integrality ratio is at least
2(n−1)/n = 2−1/n.

3.3 Padded Decomposition

Building on our previous techniques, we now design an algorithm for computing a padded decomposi-
tion; the precise statement of the guarantees appears in Theorem 3.9. Recall that the input is a metric
space (X ,d) and a parameter q > 0. The following LP formulation is similar to the one we used for the
MAX FAIR CL problem:

∑i∈X xi j ≤ 1 ∀ j ∈ X
yi j ≤ xi j′ ∀i, j ∈ X ; j′ ∈ B( j,∆/β )
xi j = 0 ∀ j ∈ X ; i ∈ X \B( j,∆)
∑i∈X yi j ≥ q ∀ j ∈ X .

(3.4)

Here, objects correspond to points in X , labels represent cluster centers (all points of X), the allowed
labels for an object are those within distance ∆, and the consistency sets C corresponds to all balls of
radius ∆/β . This LP has nonnegative variables xi j, which represent an assignment of a point j ∈ X to a
cluster centered at i ∈ X (i.e., labeling an object), and variables yi j, which represent the consistency of
the ball around j with respect to the cluster represented by center i (i.e., consistency of a set). Notice
that j ∈ X has two roles (simultaneously), of an object and of a consistency set.

Lemma 3.6. The linear program (3.4) is a relaxation of the padded decomposition problem — that is,
it is feasible provided β ≥ β ∗(X ,∆,q).

Proof. Whenever β ≥ β ∗(X ,∆,q) there exists a ∆-bounded (q,β )-padded decomposition µ . We first
construct an LP solution from a single such partition P in the support of µ: For every cluster S ∈ P,
designate a center point that attains the radius bound. Set xi j = 1 if i is the designated center of P( j);
otherwise, set xi j = 0. Now set yi j = 1 if both xi j = 1 and j is ∆/β -padded in its cluster (formally,
B( j,∆/β ) ⊆ P( j)); otherwise, set yi j = 0. This solution clearly satisfies the first and third constraints.
To see that the second constraint is satisfied, it suffices to consider the case when yi j = 1 (otherwise it
is trivial). This means that j is padded in P, so all nearby points j′ belong to the same cluster, and thus
xi j′ = 1. For the moment we ignore the last constraint, which might be unsatisfied, since ∑i∈X yi j is 1 if
j is padded in P and is 0 otherwise.

Now take a convex combination of the solutions constructed for the different P ∈ supp(µ), weighted
by their probabilities (according to µ). This solution still satisfies the first three constraints. The fourth
constraint is now satisfied because in the decomposition µ , every point j ∈ X is padded with probability
at least q.

Our algorithm’s first step is to find the smallest β > 0 such that the LP (3.4) is feasible, which can
be done via binary search over the

(n
2

)
distance values appearing in the input metric. (Note that β is not

a variable of the LP.)
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Input: an instance of padded decomposition
1. Find the smallest β > 0 such that LP (3.4) is feasible. Let (x∗,y∗) denote a feasible LP solution.
2. Initialize a cluster Ci = /0 for every i ∈ X .
3. Repeat n times
4. Choose uniformly at random i ∈ X and a threshold t ∈ [0,1].
5. Add to cluster Ci every unclustered point j ∈ X for which t < y∗i j.
6. Let D∗ = { j ∈ X : B( j,∆/β ) meets more than one cluster Ci}.
7. For every i ∈ X , let C′

i = Ci \D∗.
8. For every i ∈ X , let C′′

i = { j ∈ X : d( j,C′
i)≤ ∆/2β}.

9. Output the partition induced by {C′′
i : i ∈ X}, using singleton clusters as needed.

Figure 2: The Padded Decomposition algorithm.

The rounding procedure for LP (3.4) has three steps (see Figure 2). First, we use a procedure similar
to that in the algorithm of Figure 1, except that exactly n assignment rounds are performed to obtain a
collection of disjoint clusters {Ci : i ∈ X}. This need not be a partition, since some points might not be
assigned at all. Notice that this procedure uses the y-variables rather than the x-variables. Next, we check
for which points j ∈ X the ball B( j,∆/β ) meets more than one cluster Ci, and remove all these points
(simultaneously) from the clustering. Finally, we expand each of the (non-empty) clusters remaining
to its ∆/2β -neighborhood, and output the partition induced by these clusters (points that belong to no
cluster form singleton clusters).

We analyze the performance of this algorithm in the next two lemmas.

Lemma 3.7. The algorithm in Figure 2 always outputs a ∆-bounded partition of X.

Proof. To prove that the produced clustering is indeed a partition, it suffices to verify that the clusters
{C′′

i : i ∈ X} are disjoint. Assume for contradiction that some j ∈ X belongs to two such clusters, C′′
i

and C′′
h . Then by the definition in step 8, j is at distance at most ∆/2β from a point in C′

i and a point in
C′

h. But then these two points should have been included in D∗, contradicting their inclusions in C′
i and

C′
h.

To prove the radius bound, consider j ∈C′′
i . Then there is a j′ ∈C′

i ⊆Ci with d( j, j′) ≤ ∆/2β . By
step 5, j′ ∈ Ci satisfies y∗i j′ > 0. By the second LP constraint x∗i j ≥ y∗i j′ > 0, implying by the third LP
constraint d(i, j)≤ ∆, which completes the proof.

Lemma 3.8. Let P denote the partition output by the algorithm in Figure 2. Then for every j ∈ X,

Pr
P

[B( j,∆/2β )⊆ P( j)]≥ q/12.

Proof. Fix a point j ∈ X . Observe that once j ∈ C′
i , the entire ball B( j,∆/2β ) will end up inside the

cluster C′′
i . Thus,

Pr[B( j,∆/2β )⊆ P( j)]≥ Pr[ j ∈ ∪i∈XC′
i ] = ∑

i∈X
Pr[ j ∈C′

i ], (3.5)

where the equality is due to the fact that the clusters {C′
i}i∈X , and thus also the respective events, are dis-

joint. We next examine the n iterations over steps 4–5, and refine our earlier analysis of the randomized
assignment procedure.
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Fix now also i∗ ∈ X . For the event j ∈C′
i∗ to occur, we must have that both j ∈Ci∗ and j /∈ D∗; the

latter means that B( j,∆/β ) is disjoint of ∪i6=i∗Ci. For the purpose of a lower bound on Pr[ j ∈ C′
i∗ ], it

suffices to consider the case that i∗ ∈ X is chosen (in step 4) in exactly one of the n iterations, which
happens with probability

(n
1

)1
n(1− 1

n)n−1 ≥ 1
e . Assuming this is the case, in the iteration in which i∗ is

the chosen center, we need it to “capture” point j, which happens with probability Prt [t < y∗i∗ j] = y∗i∗ j.
In each of the other n−1 iterations, we need the chosen center i 6= i∗ to capture no point in B( j,∆/β ),
which happens with probability 1−max{y∗i j′ : j′ ∈ B( j,∆/β )} ≥ 1− x∗i j, where the inequality is by the
second constraint of LP (3.4). Recalling that i 6= i∗ is chosen uniformly at random from n−1 values, we
obtain (for our fixed i∗)

Pr[ j ∈C′
i∗ ]≥

1
e
· y∗i∗ j ·

(
∑
i6=i∗

1− x∗i j

n−1

)n−1
=

1
e
· y∗i∗ j ·

(
1−

∑i6=i∗ x∗i j

n−1

)n−1
.

The first LP constraint enforces ∑i6=i∗ xi j ≤ 1, and we obtain (assuming n ≥ 3)

Pr[ j ∈C′
i∗ ]≥

1
e
· yi∗ j ·

(
1− 1

n−1

)n−1
≥ 1

4e
· yi∗ j.

Finally, plugging the last inequality into (3.5) and then using the last constraint of the LP, we con-
clude that

Pr[B( j,∆/2β )⊆ P( j)]≥ ∑
i∗∈X

Pr[ j ∈C′
i∗ ]≥ ∑

i∗∈X

(
1
4e
· yi∗ j

)
≥ q

12
.

The two lemmas above immediately yield the following.

Theorem 3.9. There is a randomized polynomial-time algorithm that, given a metric (X ,d) and ∆,q > 0,
produces a ∆-bounded (β ′,q/12)-padded decomposition, where β ′ ≤ 2β ∗(X ,∆,q).

4 Minimum Consistent Labeling

This section gives two approximation algorithms for the minimization version of Consistent Labeling,
where the goal is to consistently label a prescribed fraction of the sets while using as few labels as pos-
sible. The first algorithm is tailored to the MIN CCL problem, where all of the sets must be consistently
labeled. Our algorithm achieves an O(log(|A|+ |C|))-approximation for the general problem (Theorem
4.1). Applying this result to the case of Sparse Cover in a distributed network (where |A| = |C| = n),
we immediately obtain an O(logn) approximation (Corollary 4.2). We also obtain a similar result for
approximating the Nagata dimension of a finite metric space (Remark 4.3). Our second algorithm com-
putes, for a given ε ∈ (0,1/4), a solution that consistently labels a (1− 3ε)-fraction of the sets using
O(ln fmax

ε
) times more labels per object than the minimum necessary to consistently label at least (1−ε)

fraction of the sets. (Recall that fmax = maxS∈C |S|; the constant 3 is quite arbitrary, and we make no
attempt to optimize it.) This bicriteria guarantee is particularly appropriate for the Network Triangula-
tion problem, where one typically permits a small fraction of pairs of points to have inaccurate distance
estimates.
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Input: an instance of MIN CCL.
1. Minimize k subject to constraints (2.1)–(2.5) and in addition that (2.4) holds with equality for every set S ∈ C.
Let (x∗,y∗,z∗,k∗) denote the optimal LP solution.
2. Repeat |L| ln(2|C|) times:
3. Choose a label i ∈ L and a threshold t ∈ [0,1] uniformly at random.
4. For each object a ∈ A, if x∗ai > t, then add i to the set of labels assigned to a.

Figure 3: The MIN CCL algorithm.

4.1 Complete Consistent Labeling and Sparse Cover

Our approximation algorithm for MIN CCL is shown in Figure 3. The only difference between this
algorithm and that for MAX CL and MAX FAIR CL (Figure 1) is the stopping condition: instead of
explicitly controlling the number of labels assigned to each object, we stop after a fixed number of
iterations.

Theorem 4.1. The algorithm for MIN CCL in Figure 3 computes, with constant probability, an O(log(|A|+
|C|))-approximation.

Proof. Let (x∗,y∗,z∗,k∗) denote the optimal LP solution. For a set S ∈C, let xmin
iS denote mina∈S x∗ai. The

probability that S is consistently labeled in a given iteration equals

1
|L| ∑i∈L

xmin
iS ≥ 1

|L| ∑i∈L
y∗iS ≥

z∗S
|L|

=
1
|L|

,

with the inequalities following from the LP constraints (2.2)–(2.4). Using the independence of the
different iterations and a union bound over all sets S ∈ C, the probability that the algorithm terminates
with an infeasible solution is at most |C|(1− 1

|L|)
|L| ln(2|C|) ≤ 1

2 .
On the other hand, constraint (2.1) ensures that the probability that an object a ∈ A receives a label

in a given iteration is
1
|L| ∑i∈L

x∗ai ≤
k∗

|L|
.

Thus, the expected number of an object receives over all iterations is at most k∗ ln(2|C|+ |A|). Since
k∗ ≥ 1, applying Chernoff bounds and a union bound over all a∈ A, it follows that with high probability,
say 3/4, the algorithm in Figure 3 terminates with each object receiving at most k∗ ·O(log |A|+ log |C|)
labels. A final union bound now completes the proof.

Of course, the success probability in Theorem 4.1 can be amplified arbitrarily via independent repe-
titions of the algorithm.

Modeling the Sparse Cover problem as a special case of MIN CCL, as explained in the Introduction,
we see that |A|= |C|= n (where n = |X | is the size of the metric space), and the following corollary is
immediate.
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Corollary 4.2. There is a randomized polynomial-time algorithm that, given an instance of Sparse
Cover, outputs, with high probability, a feasible cover with maximum degree O(logn) times that of
optimal.

Remark 4.3. Another similar application is that of computing the analog of the Nagata dimension [2,
25] of a finite metric space. The notion of bounded Nagata dimension generalizes that of bounded
doubling dimension and of hyperbolic spaces and others (see [25]). With respect to a parameter γ > 1,
the corresponding Nagata dimension of a finite metric space (X ,d), denoted dimN(X ,γ), is defined to
be the smallest r > 0 such that for all ∆ > 0 there exists a ∆-bounded cover of X with the following
property: every subset of X with radius at most ∆/γ meets at most r clusters in the cover.

Our MIN CCL algorithm — trivially generalized so that each set S ∈ C has its own restricted set LS

of labels that can be used to consistently label it — gives an O(logn)-approximation for computing the
Nagata dimension. In more detail, consider the input (X ,d) and γ . There are only

(n
2

)
relevant values

of ∆, and we can consider each one separately; so fix a value of ∆.
Define a MIN CCL instance by defining objects and labels as the points of X , and the sets C to be

the ∆/γ-balls around each point of X . The allowable labels for a set S centered at x are the points in
the ∆-ball around x. First suppose that there is a ∆-bounded cover for which every (∆/γ)-ball meets at
most k different clusters of the cover; we can extract a feasible labeling as follows. For every cluster S
in the cover with center x, label all points within distance ∆/γ of S by x. Since every point belongs to
some cluster of the cover, every (∆/γ)-ball is consistently labeled. Since every (∆/γ)-ball meets at most
k different clusters of the cover, every point is assigned at most k different labels.

Conversely, consider a feasible labeling to the consistent labeling problem. Form clusters by the
following rule: Whenever B(x,∆/γ) is consistently labeled with y, put x in a cluster centered at y. Since
every (∆/γ)-ball is consistently labeled, this defines a cover. The restricted label sets guarantee that the
cover is ∆-bounded. Finally, if B(x,∆/γ) meets a cluster of the cover that is centered at y — so this
ball contains a point z such that B(z,∆/γ) is consistently labeled by y — then x is labeled with y in the
feasible labeling. Hence, the maximum number of labels at a point upper bounds the maximum number
of clusters in the cover meeting a single (∆/γ)-ball. This correspondence between feasible labelings and
covers implies that we can use Theorem 4.1 to approximate the Nagata dimension dimN(X ,γ) to within
an O(logn) factor in polynomial time.

4.2 A Bicriteria Guarantee and Application to Network Triangulation

For a consistent labeling instance and a parameter α ∈ (0,1), let kopt(α) be the smallest k > 0 for which
there is a feasible labeling that assigns as most k labels per object and is consistent for an α fraction of
the sets. The following theorem achieves a bicriteria guarantee that is often reasonable for α close to 1;
other trade-offs are also possible.

Theorem 4.4. There is a randomized polynomial-time algorithm that, given a consistent labeling in-
stance and 0 < ε ≤ 1/4, computes with high probability a labeling that uses at most O(ln fmax

ε
) ·kopt(1−

ε) labels per object and is consistent for a (1−3ε) fraction of the sets.

Proof. The algorithm we use is shown in Figure 4. It is based on the MIN CCL algorithm (Figure 3), but
differs from it as follows: Step 1 solves a slightly different LP relaxation, which includes the constraint
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Input: an instance of MIN CL.
1. Minimize k subject to constraints (2.1)–(2.5) and in addition the constraint ∑S zS ≥ (1−ε)|C|. Let (x∗,y∗,z∗,k∗)
denote the optimal LP solution.
2. Repeat m = 8|L| ln 1

ε
times:

3. Choose a label i ∈ L and a threshold t ∈ [0,1] uniformly at random.
4. For each object a ∈ X , if x∗ai > t, then add i to the set of labels assigned to a.
5. For each object, output only the first ` = max{2ln fmax

ε
,16ek∗ ln 1

ε
} labels it received.

Figure 4: A bicriteria algorithm for MIN CL.

∑S zS ≥ (1− ε)|C|. The iterations work as before, and we perform exactly m = 8|L| ln 1
ε

iterations.
Finally, for each object, we output only the first ` = max{2ln fmax

ε
,16ek∗ ln 1

ε
} labels it received.

It is easy to verify that the LP in step 1 is indeed a relaxation. Hence k∗ ≤ kopt(1− ε) and, by
definition, the algorithm outputs at most `≤ 16e ln fmax

ε
· kopt(1− ε) labels per object.

Now, call a set S good if z∗S ≥ 1
4 in the optimal LP solution. At least (1− 2ε)|C| sets are good,

for otherwise ∑S z∗S < (1− 2ε)|C| · 1 + (2ε)|C| · 1
4 < (1− ε)|C|, which would contradict the last LP

constraint. For every good set S, by the calculation in Theorem 4.1, the probability that none of the m
iterations labels S consistently equals(

1− 1
|L| ∑i∈L

xmin
iS

)m

≤
(

1−
z∗S
|L|

)m

≤ e−2ln 1
ε = ε

2.

Again following the proof of Theorem 4.1, the expected number of labels that a given object a ∈ A
receives during the m iterations is

m · 1
|L| ∑i∈L

x∗ai ≤
mk∗

|L|
= 8k∗ ln

1
ε
.

By a Chernoff bound of the form Pr
[
X ≥ t ·E[X ]

]
≤ 2−t E[X ] for all t ≥ 2e (see e.g. [34, Exercise 4.1]),

the probability that a given a ∈ A receives more than ` labels is at most 2−` ≤ (ε/ fmax)2. Applying a
union bound, for every good set S, the probability that S is not labeled consistently by the algorithm’s
output (either because none of the m iterations labels it consistently or because the final step removes a
consistent label) is at most

ε
2 + |S| ·

(
ε

fmax

)2

≤ 2ε
2.

By linearity of expectation, the expected fraction of good sets that the algorithm does not label consis-
tently is at most 2ε2, and using Markov’s inequality, the probability that this fraction exceeds ε is at most
2ε ≤ 1/2. Altogether we conclude that with probability at least 1/2, the algorithm labels consistently
at least a (1− ε)(1− 2ε) > 1− 3ε fraction of the sets in C. Obviously, we can amplify the success
probability via independent repetitions.
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Metric Triangulation. Recall from the Introduction the problem of computing a triangulation of a
metric that has low order. We can model this as a consistent labeling problem with the same slight
generalization as in Remark 4.3, and use Theorem 4.4 to prove the following.

Corollary 4.5. There is a randomized polynomial-time algorithm that, given a metric triangulation
instance (including ρ and ε), outputs a (1−3ε,ρ)-triangulation of order O(ln 1

ε
) · kopt(X ,ε,ρ).

Proof. We first model the metric triangulation problem as a slight generalization of MIN CCL. Objects
correspond to the points X and labels correspond to beacons (generally all of X). For every pair of nodes
x,y we want a consistency constraint that reflects our desire that x,y have at least one beacon in Sx∩Sy

attaining D+(x,y), and similarly at least one common beacon attaining D−(x,y). We model this by using
set-dependent allowable labels LS, and furthermore replacing the set of constraints (2.3) by two sets of
constraints, one with allowable label set L+

{x,y} = {b ∈ X : d(x,b)+ d(b,y) ≤ ρ · d(x,y)} and one with
allowable label set L−{x,y} = {b ∈ X : |d(x,b)− d(b,y)| ≥ d(x,y)/ρ}; the extra set of constraints only
increases the hidden constants in our analysis. The correspondence between this variant of consistent
labeling and network triangulation is immediate (notice that fmax = 2), and we can thus use our algorithm
from Theorem 4.4 to obtain a bicriteria bound for Metric Triangulation.

5 Hardness Results

This section shows that the consistent labeling problems studied in the preceding sections are APX-hard.
We require only relatively simple reductions from well-known problems such as SET COVER. We have
not made serious attempts to optimize these hardness results and it is quite possible that they can be
strengthened.

Minimum Consistent Labeling. We start with hardness results for minimum consistent labeling prob-
lems; these match, up to constant factors, the guarantees of our approximation algorithms in Theo-
rems 4.1 and 4.4.

Theorem 5.1. There exists a constant c0 > 0 such that it is NP-hard to approximate the MIN CCL
problem within a factor of c0 log(|A|+ |C|).

Furthermore, for every fixed ε ∈ (0,1/4), it is NP-hard to find, given a MIN CCL instance, a labeling
that is consistent for a 1−3ε fraction of the sets and uses at most c0kopt(1− ε) · log(1/ε) labels. These
results hold even when fmax = 2.

Proof. The proof is by reduction from the SET COVER problem, defined as follows. The input is a
set E of elements and a collection U ⊆ 2U of subsets. The goal is to find a a minimum-cardinality
subcollection U′ ⊂U that covers E, meaning that ∪U∈U′U = E. There is a constant c1 > 0 such that it is
NP-hard to decide whether (i) an input comprising a SET COVER instance and an integer t > 0 admits a
cover U′ of size at most t; or (ii) the size of every cover U′ is at least c1t log |E| [32, 12, 36].

Our reduction from SET COVER to MIN CCL works as follows. Create an object for every element
(so E ⊆ A) and a label for every SET COVER set (so L = U). For each object (element) e, the permissible
labels are the SET COVER sets that contain it: Le = {U ∈ U : e ∈U}. Create one additional root object
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r with Lr = U. Finally, for every object e, create a consistency set {e,r}. Recall that the goal in the MIN
CCL problem is to minimize the maximum number of labels assigned to an object. Notice that fmax = 2,
the number of objects is |A|= |E|+1, and the number of consistency sets is |C|= |E|.

First, suppose that the SET COVER instance has a cover U′ of size t. Then U′ naturally induces a
feasible labeling: label each object e with some set of U′ that contains it, and label the root object r with
every set in U′. This feasible labeling uses at most |U′|= t labels per object.

Second, suppose that every cover of the SET COVER instance has size at least c1t log |E|. Consider a
solution for the corresponding MIN CCL instance that uses only k labels per object. Since every object e
participates in exactly one consistency set, we can assume that it is assigned a single label. The same
label must be assigned also to the root object. It follows that the labeling of the root object corresponds to
a feasible solution U′ to the SET COVER instance, and hence at least |U′| ≥ c1t log |E| labels are assigned
to the root object. It is therefore NP-hard to determine whether the value of a MIN CCL instance is at
most t or at least 1

4 c1t log(|A|+ |C|).
We prove the second assertion of the theorem statement using the following fact which holds for

every fixed ε ∈ (0,3/4): Given as input t > 0 and a SET COVER instance that admits a cover of size
at most t, it is NP-hard to find a subcollection Û ⊆ U that covers a 1− ε fraction of the elements
in E and has size at most 1

2 c1t log(1/ε). This fact follows from the aforementioned hardness results,
because a polynomial-time procedure that finds such a subcollection Û can be used (iteratively on the
yet uncovered elements) to cover all of E using less than c1t log |E| sets (see e.g. [12, Proposition 5.2]).
We will also use the fact that all of the sets in these hard SET COVER instances have essentially the same
size |U |/t (in fact, the optimal solution uses exactly t sets disjoint of each other). Thus, for ε < 1/4,
every subcollection Û⊆ U that covers a 1− ε fraction of the elements contains at least t/2 sets.

Now apply our reduction from SET COVER to MIN CCL, starting with the SET COVER instances
described in the previous paragraph. It is straightforward to verify that: For ε ∈ (0,1/4) and t > 0,
and MIN CCL instances that admit a solution of value kopt(1) = t, it is NP-hard to find a labeling that
is consistent for at least a 1− 3ε fraction of the sets and uses at most 1

2 c0t log(1/ε) labels per object.
Moreover, in these MIN CCL instances kopt(1− ε) ≥ t/2, and the second assertion of Theorem 5.1
follows.

Maximum Consistent Labeling. We next show hardness results for the maximum consistent labeling
problems studied in Section 3.

Theorem 5.2. The MAX CL and MAX FAIR CL problems are APX-hard, even when fmax = 2.

Proof. We use essentially the same reduction as in Theorem 5.1, starting from the MAX k-COVER

problem, where given the same data as in a SET COVER instance and also a “budget” t > 0, the goal
is to find a subcollection U′ ⊆ U of size t that maximizes the number of elements covered. For every
fixed 0 < c2 < 1/e, it is NP-hard to decide whether t sets can cover all the elements of a MAX k-COVER

instance, or whether they can cover at most a 1− c2 fraction of the elements [12, Proposition 5.3].
Arguing as in the proof of Theorem 5.1 shows the following: for every fixed 0 < c2 < 1/e, it is NP-hard
to decide whether a MAX CL instance has value (i.e., fraction of consistently labeled sets) 1 or value at
most 1− c2.
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Extending the argument to MAX FAIR CL is immediate, using the exact same reduction. First,
suppose that the MAX k-COVER instance can be covered using t sets. Then the MAX CL instance
admits a labeling which is consistent for all sets, and thus can be viewed as a solution to the MAX FAIR
CL instance with value 1 (the distribution over labelings uses only one labeling). Second, for c2 < 1/e,
suppose that every t sets can cover at most (1− c2)t elements. As argued earlier, it follows that every
solution to the respective MAX CL instance consistently labels at most a 1− c2 fraction of the sets.
Since a solution to MAX FAIR CL is just a distribution over solutions to MAX CL, we immediately
see that the former has value at most 1− c2. This shows that approximating MAX FAIR CL to within a
factor of 1− c2 is NP-hard.

We provide next two hardness results for MAX CL that apply even when the number k of allowable
labels per object is 1.

Theorem 5.3. For every fixed fmax ≥ 3, the MAX CL problem is NP-hard to approximate to within a
factor of Ω( fmax/ log fmax), even when k = 1.

Proof Sketch. We show a reduction from the t-SET PACKING problem, which is NP-hard to approximate
to within a factor of Ω(t/ log t) when t (the size of the sets) is fixed [16]. The reduction takes a t-SET

PACKING instance, which comprises elements and sets, and constructs a MAX CL instance by letting
the elements be our objects and the sets our labels. The labels (sets) that are allowed for an object
(element) are the sets that contain the element. The consistency sets are just the t-SET PACKING sets,
hence fmax = t. We also set the number k of labels allowed per object to 1. The theorem follows by
observing that a packing of p sets naturally induces a feasible labeling that is consistent for p sets, and
conversely.

Theorem 5.4. The MAX CL problem is NP-hard, even when fmax = 2 and k = 1.

Proof Sketch. We give a reduction from the MULTIWAY CUT problem, which is NP-hard even with
three terminals [9]. Given an input graph G for multiway cut with three terminals {t1, t2, t3} ⊂ V , build
a MAX CL instance by letting G’s vertices be our objects, and the three terminals be our labels. Every
object is allowed every label, except that each terminal vertex ti is allowed only itself as a label, i.e.,
Lti = {ti}. Every edge in G becomes a consistency set of cardinality fmax = 2 in the obvious way. In
addition, the number of labels per object is k = 1.

The theorem follows by observing that the multiway cuts of G are in one-to-one correspondence
with feasible labelings, where the uncut edges correspond to consistently labeled sets.

6 Concluding Remarks

For most of the problems studied in this paper, we leave open the question of whether our guarantees are
close to the best possible. While we know that the abstract consistent labeling problems are APX-hard
(see Section 5), we know little about the four special cases that are listed in Table 1 and motivated this
work. For example, we are not aware of any hardness of approximation results that exclude a true (non-
bicriteria) approximation for computing Padded Decompositions and Metric Triangulations, even for
general metric spaces. We also cannot rule out a constant-factor approximation algorithm for computing
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a Sparse Cover. The one slight exception is Theorem 3.5, which gives a lower bound on the integrality
gap of our linear program for computing a separating decomposition.

Another direction for future research is to study optimization problems inspired by the metric de-
composition of Arora, Rao and Vazirani [1]. For example, one could seek a relative guarantee, anal-
ogous to the absolute guarantee in [1], for the following problem: The input is a metric space (X ,d)
and parameter δ > 0, and the goal is to find A,B ⊂ X satisfying |A|, |B| ≥ δ |X |, so as to maximize
d(A,B) = mina∈A,b∈B d(a,b). This problem does not seem to fall within our consistent labeling frame-
work.
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[20] J. Kleinberg and É. Tardos. Approximation algorithms for classification problems with pairwise
relationships: metric labeling and markov random fields. J. ACM, 49(5):616–639, 2002. 7, 9

[21] R. Krauthgamer. On triangulation of simple networks. In 19th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 8–15. ACM, 2007. 6

[22] R. Krauthgamer and J. R. Lee. Algorithms on negatively curved spaces. In 47th Annual IEEE
Symposium on Foundations of Computer Science, pages 119–132. IEEE Computer Society, 2006.
4

[23] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding method
for finite metrics. Geometric And Functional Analysis, 15(4):839–858, 2005. 3, 4

[24] R. Krauthgamer and T. Roughgarden. Metric clustering via consistent labeling. In 19th annual
ACM-SIAM symposium on Discrete algorithms, pages 809–818, jan 2008. 1

[25] U. Lang and T. Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and lipschitz
extensions. International Mathematics Research Notices, 2005(58):3625–3655, 2005. 6, 17

THEORY OF COMPUTING 23



ROBERT KRAUTHGAMER AND TIM ROUGHGARDEN

[26] M. Langberg, Y. Rabani, and C. Swamy. Approximation algorithms for graph homomorphism
problems. In 9th International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, volume 4110 of Lecture Notes in Computer Science, pages 176–187. Springer,
2006. 9

[27] J. R. Lee and A. Naor. Metric decomposition, smooth measures, and clustering. Manuscript,
available at http://www.cims.nyu.edu/∼naor/homepage%20files/cluster.pdf, January
2004. 5

[28] J. R. Lee and A. Sidiropoulos. Genus and the geometry of the cut graph. In 20th annual ACM-SIAM
symposium on Discrete algorithms, pages 193–201. SIAM, 2010. 3, 4

[29] F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommod-
ity flow problems with applications to approximation algorithms. In 29th Annual Symposium on
Foundations of Computer Science, pages 422–431, October 1988. 4

[30] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995. 2

[31] N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica, 13(4):441–454,
1993. 4

[32] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J. ACM,
41(5):960–981, 1994. 19

[33] J. Matousek and A. Sidiropoulos. Inapproximability for metric embeddings into rd . In 49th Annual
IEEE Symposium on Foundations of Computer Science, pages 405–413. IEEE, 2008. 2

[34] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995. 18

[35] S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In
Proceedings of the 15th Annual Symposium on Computational Geometry, pages 300–306. ACM,
1999. 2, 3, 4

[36] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant error-
probability PCP characterization of NP. In 29th Annual ACM Symposium on Theory of Computing,
pages 475–484. ACM, 1997. 19

[37] A. Slivkins. Distributed approaches to triangulation and embedding. In 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 640–649, 2005. 6

[38] A. Slivkins. Distance estimation and object location via rings of neighbors. Distributed Computing,
19(4):313–333, 2007. 6

THEORY OF COMPUTING 24



METRIC CLUSTERING VIA CONSISTENT LABELING

AUTHORS

Robert Krauthgamer
Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science
Rehovot, Israel
robert.krauthgamer weizmann ac il
http://www.wisdom.weizmann.ac.il/∼robi

Tim Roughgarden
Assistant Professor
Department of Computer Science
Stanford University
Stanford, CA USA
tim cs stanford edu
http://theory.stanford.edu/∼tim

ABOUT THE AUTHORS

ROBERT KRAUTHGAMER received his Ph. D. at the Weizmann Institute of Science in 2001
under Uriel Feige. He was a subsequently a postdoc in Berkeley’s theory group, and then
a Research Staff Member at the theory group in the IBM Almaden Research Center.
Since 2007, he is a faculty member at the Weizmann Institute of Science. Robert’s
main research area is the design of algorithms for problems involving combinatorial
optimization, finite metric spaces, high-dimensional geometry, data analysis, and related
areas. His favorite sport since youth is swimming, and once he swam across the Sea of
Galilee in a 10km competitive race, and was the last one to arrive at the finish line.

TIM ROUGHGARDEN received his Ph. D. at Cornell University in 2002 under Éva Tardos.
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